
Joseph Malt

Trusted-Path Keyboard

Computer Science Tripos – Part II

Churchill College

May 17, 2019



Acknowledgements

Dr Markus Kuhn, my supervisor, for all his advice, especially his cryptography exper-
tise.

Prof. John Daugman and Dr Anil Madhavapeddy, my overseers, for their advice
and encouragement.

Dr John Fawcett, my Director of Studies, for his advice, especially when writing the
proposal.

Mike Roe, for his input during the project selection stage.

Peter Rugg and Thomas Wemyss, for reading a draft of this dissertation and providing
useful feedback.

My parents, Daniel Malt and Prof. Jeannette Littlemore, for proofreading this
dissertation.

Declaration

I, Joseph Malt of Churchill College, being a candidate for Part II of the Computer Science
Tripos, hereby declare that this dissertation and the work described in it are my own work,
unaided except as may be specified below, and that the dissertation does not contain
material that has already been used to any substantial extent for a comparable purpose.

I am content for my dissertation to be made available to the students and staff of the
University.

Date: 16th April 2019

2



Proforma

Candidate Number: 2346B
College: Churchill College
Project Title: Trusted-Path Keyboard
Examination: Computer Science Tripos – Part II, 2019
Word Count: 119751

Final Line Count: 1972
Project Originator: Dr M. G. Kuhn
Supervisor: Dr M. G. Kuhn

Original Aims of the Project

To design, construct and evaluate a prototype of a device which provides a trusted,
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Chapter 1

Introduction

1.1 Aim

The aim of this project was to develop and evaluate a keyboard which provides an input
channel that is secure against hardware keystroke loggers (‘keyloggers’). These are devices
which can be inserted between a keyboard and the computer to which it is connected in
order to surreptitiously record key presses.

1.2 Motivation

In recent years, considerable effort has been put into detecting malicious software that has
the potential to leak secret information, with software keyloggers being one such example.
However, hardware keyloggers can provide an attacker with the same information, whilst
being nearly undetectable in software. Such devices are widely available for less than £50.
[17]

Since hardware-based attacks require physical access to the device concerned, they are

Figure 1.1: A KeyGrabber USB keylogger, with 1p coin for scale.
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10 CHAPTER 1. INTRODUCTION

harder to execute than those based on malicious software. Nonetheless, individuals who
are at higher risk may be concerned about so-called ‘evil maid’ attacks [34], in which an
attacker with brief physical access performs an undetectable modification which compro-
mises security. Hardware keyloggers are a cheap and quick-to-install way to perform such
an attack.

It is difficult to secure a computer system against an attacker who can physically modify
it: as Ross Anderson puts it, ‘many security mechanisms can be defeated if a bad man
has physical access to them’. [2, p.365]

Given an attacker with sufficient resources, this may be true, but this does not mean
frustrating such attacks is worthless. Hardware keyloggers can be installed more quickly
and cheaply than other hardware-based attacks, so frustrating their use may be sufficient
to inhibit some attackers, such as those who only have physical access for a short time.

A good example of where a hardware keylogger might be a concern is an open office: if
Alice wants to steal her colleague Bob’s password, she can easily attach a keylogger to his
PC while he goes out for lunch.

1.3 Existing work

There do not appear to be any existing products on the market that provide an encrypted
keyboard channel over a wired connection. However, Bluetooth and other wireless key-
boards generally use encryption on the radio link, and are in many ways comparable. An
overview of Bluetooth cryptography can be found in [28].

Recent research has looked into the feasibility of detecting hardware keyloggers from
software by observing different behaviour, both at the physical layer and higher up in
the protocol stack. For some keyloggers, this has been successful [25]. Nonetheless, it
is possible to construct a keylogger which listens completely passively (for example by
electrically isolating the logging circuitry from the USB lines), and is indistinguishable
from a directly-attached keyboard.

1.4 Project overview

In this project I implement two complementary programs, one running on a microcon-
troller with a keyboard attached and the other running on a Linux PC. These programs
communicate over a USB connection to provide an encrypted, authenticated channel over
which keystrokes can be securely transmitted from the microcontroller to the host. As
part of this I design and implement a cryptographic protocol based on the AES block
cipher.
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I then analyse the latency of the system to determine to what extent the encrypted channel
delays the processing of keystrokes.

Finally I analyse the security of the system against a variety of potential attacks, and
compare it to an ordinary keyboard from a usability perspective.



Chapter 2

Preparation

2.1 Starting point

• I have developed simple programs for microcontrollers before, but I have never
implemented cryptographic algorithms or a non-trivial communication protocol.

• I have basic knowledge of C from the Part IB course Programming in C and from
hobby programming.

• Much of the development for this project took place before the Lent term Cryp-
tography course was given, so I had to do some reading ahead. At the time, I had
basic knowledge of cryptography, as well as common software vulnerabilities, from
the Part IB Security course.

2.2 Terminology

This project consists of two parts, developed together.

The device is a microcontroller with a keyboard and potentially other components at-
tached. It is responsible for encrypting sensitive data. In a commercial product, the
microcontroller would most likely be integrated into the keyboard housing.

The host is an ordinary PC, to which the device is connected. The system as a whole
aims to provide a secure way of entering data on the host.

The system consists of two parallel programs (the ‘host program’ and ‘device program’),
and a protocol by which they communicate.

12



2.3. REQUIREMENTS 13

2.3 Requirements

The requirements can broadly be split into the categories of usability and security.

Usability

U1 The system must provide a keyboard-based input channel which is usable as an
ordinary keyboard. After a setup phase, the user should be able to forget they are
using a specialised input device, i.e. the device should be transparent.

U2 The setup procedure, if it requires user input, should consist of simple and easy-to-
follow instructions.

Security

S1 The attacker must not be able to determine which keys are pressed on the keyboard.
This includes probabilistic information.

S2 The attacker must not be able to modify or reorder keystrokes.

S3 The attacker must not be able to spoof keystrokes, including replaying past
keystrokes.

S4 Provided the user follows instructions correctly, the attacker must not be able to
trick them into compromising the system.

Specifically excluded requirements

E1 The system does not need to resist denial-of-service attacks, in which an attacker
simply stops the keyboard from working at all (for example by cutting the connection
or mangling data).

E2 The system does not need to support anything other than US or UK English
QWERTY keyboards.

2.4 Threat model

When designing any security-critical system, a clear threat model is needed. This helps
enumerate possible vulnerabilities, and also helps bound the scope of any security mea-
sures by putting a limit on what the attacker can do.
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The threat model for this device is based on a theoretical attacker who has the following
capabilities and limitations:

T1 The attacker has full access to all data transmitted over the serial line between the
device and the host system. They can therefore eavesdrop on, modify, replay and
inject arbitrary traffic in both directions.

T2 The attacker can temporarily disconnect the device and host as often as they wish.
The attacker cannot permanently disconnect the device and host, because denial-
of-service attacks are out of scope.

T3 The attacker does not have access to the host system beyond what is normally
available to a USB peripheral attached to a GNU/Linux system. In particular, they
cannot run arbitrary code on the host or device. They may, however, send traffic
which exploits vulnerabilities in the host or device software.

T4 The attacker may not exploit pre-existing vulnerabilities in the USB stack, Linux
kernel or any other software on the host that the system relies on.

T5 The device and host can share a small amount of secret key material out-of-band.
This cannot be captured by eavesdropping on the serial line.

T6 The attacker may perform side-channel attacks such as timing attacks, exploiting
imperfections in the implementation of any cryptography.

T7 The attacker may log data for later processing on a more powerful system, uncon-
strained by the limited computational power available in the small form factor of a
keylogger.

T8 The attacker has full knowledge of the design; the system must not depend on
‘security by obscurity’.1

T9 The attacker cannot physically tamper with the device or the host.

2.5 Design decisions

In light of the requirements, I made some decisions as to how the system should be
implemented.

2.5.1 User as a secure channel

As described by Dr Kuhn in the original project suggestion [18], I decided to exploit the
fact that the user can act as a secure channel for transmitting key material between the

1This idea is known as Kerckhoffs’ Principle and dates from 1883. [16]
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host and device. Specifically, the user can be shown a (reasonably short) secret value,
such as a password, on screen and required to type it in on the keyboard. This secret
never travels over the USB connection, so it cannot be discovered by an attacker.

There are many ways to use such a secret to secure a connection. In this project, I use a
password-based key derivation function to generate cryptographic keys from the password;
these are used to encrypt and authenticate the connection. I chose to use this approach
because it is possible to construct such a function using the same cryptographic primitive
(the AES block cipher) that I use for encryption and authentication. Using a single
primitive minimises the size of the program, which is important on a microcontroller with
limited storage.

An alternative method is Password-Authenticated Key Exchange, in which the communi-
cating parties negotiate a key with one another. They use the password to ensure that
they are genuinely talking to one another, and not a ‘man-in-the-middle’ attacker, who
impersonates each party to the other.

Other methods exist which do not require the exchange of a password. For example,
encrypted chat platforms such as WhatsApp encourage users to compare a digest of the
shared key [38], while HTTPS uses trusted certificate authorities to cryptographically
vouch for the identity of one or both communicating parties.

Bluetooth, which is widely used for keyboards and other input devices, commonly uses a
shared PIN entered or displayed on both devices (a form of PAKE), [28, p.12] although
lower-security devices such as headphones often skip authentication entirely.

Status display

As the device relies on the keyboard for password entry, it must be able to operate in a
special ‘password entry mode’ in which anything entered on the keyboard is interpreted
as secret material, and not as ordinary keystrokes to be sent to the host. The device must
be able to unambiguously indicate when it is in this mode.

For this I attached an LED to the Arduino, which is illuminated only when the device is
in password entry mode.

2.5.2 Using an off-the-shelf keyboard and external microcon-
troller

It was clear from the beginning that a programmable microcontroller would be needed to
implement the encrypted communication protocol. Initially I intended to use a keyboard
with a built-in microcontroller, but while these do exist, they are only used by a very
small community of hobbyists, and as a result there is almost no documentation.
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I therefore decided to use an off-the-shelf USB keyboard and an external microcontroller.
The keyboard used for development is a Trust 20623, available for under £10, [35] but
several other USB keyboards (selected arbitrarily out of the filing cabinet in the Intel
Lab) have been verified to work.

For the microcontroller I decided to use the widely-used Arduino Uno [4] platform, which
consists of an ATMega328P 8-bit microcontroller, mounted on a circuit board with com-
ponents for programming over USB, and headers for easy interfacing with electronic com-
ponents.

2.5.3 Using existing USB hardware

The Arduino interfaces with the keyboard via a USB Host Shield [3]. This is a commer-
cially available device which acts as a USB host and communicates with the microcon-
troller using the Serial Peripheral Interface (SPI) standard. At the core of this device is
a MAX3421E chip [24], which implements both the low-level USB protocol and the ana-
logue electrical operations (voltage level shifting, differential signalling) needed to interact
with a USB device.

PC (Host) Arduino 
Uno

USB Host 
Shield Keyboard

Keylogger

USB

SPI

USB USB

Device

Figure 2.1: Block diagram of the hardware components in the system, including a keylogger if
present.



Chapter 3

Implementation

3.1 Hardware

As previously mentioned, the core of the hardware is an ATMega328P microcontroller, on
an Arduino Uno development board. Mounted on top of this is the USB Host Shield (the
term ‘shield’ comes from the mounting position), with the MAX3421E USB controller.

Also connected to the Arduino are two small LEDs. One (green) is used as an indicator
that the device is in password-entry mode as discussed in subsection 2.5.1, and the other
(red) indicates that the password just entered is being processed and the device is not
ready for operation. Both LEDs were also used to indicate the program state for debugging
during development.1

The entire assembly is powered from the USB connection to the host. It is possible to
power the Arduino board from a separate power supply, but this is only necessary if
components are connected which draw a large current (greater than 100mA).

Figure 3.1 shows the hardware setup.

The ATMega328P, like any microcontroller, is a resource-constrained environment. The
chip contains only 2KB of RAM, and operates at a maximum frequency of 20MHz. The
non-volatile flash memory is 32KB, which restricts the size of the program. All of these
constraints had to be taken into account when designing the system.

1The most convenient way to debug an Arduino program is to print data to an attached PC over the
serial line; this was not always possible since this project uses the serial line to carry binary messages
between the microcontroller and the PC.

17



18 CHAPTER 3. IMPLEMENTATION

Figure 3.1: The hardware setup of the system, showing the Arduino board with the USB Host
Shield mounted on top, and the LEDs on an adjacent breadboard. The white USB cable connects
to the host and also supplies power; the black USB cable is from the keyboard.

3.2 Protocol design

The host and device communicate using a custom protocol on top of the USB Abstract
Control Model (ACM, sometimes called ‘USB Serial’) protocol. ACM is designed for
emulating hardware serial ports, and as such provides a framework for sending arbitrary
sequences of bytes between a peripheral and a host system. It is commonly used for
connecting devices such as low-speed modems. [30]

3.2.1 Message structure

The message structure is designed to accommodate both encrypted and plaintext data.

All messages are a fixed length of 32 bytes. Using fixed-length messages simplifies commu-
nication as the receiver can detect when a complete message is received simply by waiting
for the input buffer to be full.

The first byte is a magic number identifying the type of message. This is followed by up to
31 bytes of unencrypted arbitrary data (for all message types except MSG_ENCRYPTED) or
a 16 byte payload of encrypted data followed by a 15-byte message authentication code, as
described in subsection 3.3.2. The size of this payload was deliberately chosen to coincide
with the size of an AES block, which simplifies encryption and decryption.

The encrypted data inside a MSG_ENCRYPTED, when decrypted, has further structure: the
first byte is a magic number identifying the type of message (key-down or key-up event),
followed by up to 15 bytes of data. Full details can be found in Figure ??.
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List of messages

Name Magic
number
(byte 0)

Direction Purpose Contents

MSG_SETUP 0xAA Device → Host Set up encrypted
communication
and transfer IV
(counter) for
encryption.

Bytes 1-4: ini-
tialisation vector
for encryption.
Bytes 5-31:
0x00.

MSG_SETUP_ACK 0xBB Host → Device Acknowledge
connection setup.

Bytes 1-31: 0x00.

MSG_REKEY_INIT 0xCC Device → Host Prompt host to
generate and
display a secret
to establish new
keys.

Bytes 1-31: 0x00.

MSG_ENCRYPTED 0xDD Device → Host Wrapper for en-
crypted data.

Bytes 1-16: En-
crypted data.
Bytes 17-31:
MAC.

MSG_SALT 0xEE Host → Device Salt for key
derivation (see
section 3.4).

Bytes 1-16: Salt.
Bytes 17-31:
0x00.

Figure 3.2: The messages transmitted between host and device in the system.

List of encrypted messages

All encrypted messages are sent from the device to the host, as the payload of a
MSG_ENCRYPTED.

Name Magic
num-
ber

Purpose Contents

EVENT_KEYDOWN 0x11 Key down event from the
keyboard.

Byte 1: keycode. Byte 2:
modifiers.

EVENT_KEYUP 0x22 Key up event from the key-
board.

Byte 1: keycode. Byte 2:
modifier.

Figure 3.3: The encrypted messages used in the system. N.B. See subsection 3.5.2 for details
of keycode and modifier bytes.
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3.2.2 State machines

Both the host and device are implemented as finite state machines. This is a conceptual
model in which at any given time the system is in one of a finite set of states. The current
state controls the behaviour of the system, and the system can be made to change state by
internal or external triggers. State machines are a common design approach for modelling
distributed systems.

Connection setup

When the device boots, it transmits MSG_SETUP messages on the serial line every
100ms. When the program starts, it waits for a valid MSG_SETUP, then replies with a
MSG_SETUP_ACK. The system is then ready for use.

This design could lead to the serial input buffer on the host PC becoming full with
MSG_SETUP messages, if the host is not started at the same time as the device. To avoid
this, the host program flushes the input buffer on startup.

An alternative solution would be for the host to initiate communication. Such a design
would also better reflect the underlying USB protocol, in which all communication is
host-initiated. Having the host poll for updates may however increase latency.

Protocol diagram

A full diagram of the protocol can be found in section 3.7.

Name Purpose
INIT Start state. Open a serial connection to the device and wait for a valid

MSG_SETUP.
OPERATING Listen for, and process, MSG_ENCRYPTED messages representing keystrokes.

Also handle MSG_REKEY_INIT by transitioning to state REKEY.
REKEY Generate and display a password as described in subsection 3.4.4. Tran-

sitions immediately to OPERATING; an alternative implementation might
perform some correspondence with the device to ensure the key agreement
was successful.

Figure 3.4: List of states in the host.
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INIT OPERATING REKEY

MSG_SETUP/
MSG_SETUP_ACK

MSG_REKEY_INIT/_

(automatic)

Figure 3.5: State diagram for the host. Edge labels indicate the input (if any) that triggers
the transition, followed by the output (if any) caused by the transition.
Name Purpose
INIT Start state. Repeatedly send MSG_SETUP requests to the host and wait

for a MSG_SETUP_ACK message.
OPERATING Scan for keystrokes and send keystroke messages to the host. Also respond

to the special keystroke entry sequence by sending MSG_REKEY_INIT and
transitioning to state REKEY.

REKEY Listen for and record keystrokes. When the Enter key is pressed, use
entered keystrokes to generate new keys, then transition to OPERATING.

Figure 3.6: List of states in the device.

INIT OPERATING REKEY

_/MSG_SETUP

MSG_SETUP_ACK/_

Ctrl-R/
MSG_REKEY_INIT

Enter/_

Figure 3.7: State diagram for the device. Edge labels indicate the input (if any) that triggers
the transition, followed by the output (if any) caused by the transition.

3.3 Message security

In order to provide the secure channel, keystroke data is encrypted and authenticated.

The key cryptographic primitive used for both encryption and authentication is the Ad-
vanced Encryption System (AES). This is a block cipher, meaning that it takes a block
of input data (‘plaintext’) of fixed size (128 bits) and a key (whose size depends on the
variant of the algorithm) and deterministically produces a block of encrypted data (‘ci-
phertext’), also 128 bits. The mapping of inputs to outputs is 1:1, and the transformation
is easily reversible (the decryption operation), provided the key is known.
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AES is a symmetric cipher, meaning that the same key is used to encrypt and decrypt
data. This means both communicating parties must share a key; the way in which this is
set up is described in section 3.4.

For this project I used AES-128, a variant in which keys are 128 bits long (alternatives
are AES-192 and AES-256). All three variants are similar and the choice of a shorter
key length variant was made to save memory on the microcontroller. Using a shorter key
length theoretically makes the system more vulnerable to brute-force attacks, in which
the attacker tries all possible keys, but as described in section 4.2, brute-forcing a 128-bit
key is not feasible.

I decided to write my own implementation of AES-128 for this project. The reasons for
this were two-fold: in order to learn about AES in detail, and to have an implementation
which contains only the primitives needed for the project, minimising code size. This
implementation was verified against the test vectors (sample input-output pairs) in the
FIPS 197 standard [27], which specifies AES.2

In a system designed for production use, writing one’s own version of cryptographic
primitives like AES would be considered poor practice, as even a functionally correct
implementation may be prone to side-channel attacks. For example, a poorly designed
implementation might take varying amounts of time depending on the value of the key,
thus leaking information to an attacker. In a production implementation, it would be
preferable to use an implementation designed and vetted by experts, such as those in the
NaCl library. [26] As AES is very widely used, some microcontrollers such as the Atmel
XMEGA line even contain a hardware module for AES encryption and decryption. [6]

3.3.1 Message encryption

AES as described above is not by itself a suitable encryption solution, as it is only able to
encrypt messages that are exactly the length of one block (128 bits). To encrypt anything
else, the message must be padded to a multiple of the block length, split up into block-size
chunks and then encrypted. There are various methods of doing this, known as modes of
operation.

The simplest mode, Electronic Codebook (ECB), splits the message into 128-bit chunks
and encrypts each chunk separately. The problem with this mode is that the same plain-
text always encrypts to the same ciphertext. Using this mode to encrypt keystroke traffic
might mean that every time a given key is pressed, the same ciphertext is generated. This
makes the traffic vulnerable to frequency analysis : in this project, for instance, the most
common encrypted message might represent the user entering an ‘E’, this being the most

2At this point I was somewhat hindered by the US government shutdown, which left the website of
the National Institute of Standards and Technology offline. Fortunately I was eventually able to find a
copy of the standard elsewhere.
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common letter in English text. ECB mode also fails to obscure patterns in the data, as
can be seen in Figure 3.8.

Figure 3.8: An image encrypted with a block cipher using ECB mode, showing the failure to
obscure patterns in the data. Generated by Filippo Valsorda, based on an original by Wikipedia
user Lunkwill. Licensed under CC-BY-SA.

There are many more sophisticated modes of operation which do not suffer from these
problems. For this project I used counter mode (CTR). In this mode, the data is not
directly encrypted with AES. Instead an incrementing counter is encrypted, generating
a pseudorandom keystream. This keystream is combined with the data using XOR. To
decrypt, the recipient generates the same keystream and applies XOR again, recovering
the original data. Figure 3.9 shows this mode in use.

CTR mode has some advantages over other modes of operation. For this project, the
most important is that it does not depend on the ciphertext or plaintext of block n

to correctly decrypt block n + 1. This means that if a block of ciphertext is altered
or corrupted in transit it will decrypt to nonsense, but subsequent blocks will decrypt
correctly. Transmission errors therefore do not stop the system working, provided the
counter is still incremented when a bad block is received.

This property proved useful for the project, as the USB serial line experiences occasional
bit errors, and a single dropped keystroke is far less problematic than a complete failure.

Counter EK1 ⊕ Output (ciphertext)

Keystroke (plaintext)

Figure 3.9: CTR mode encryption as used in this project. The symbol ⊕ denotes exclusive-OR
(XOR).



24 CHAPTER 3. IMPLEMENTATION

If the error rate were higher, then it may be worth adding error correction, to supplement
the error detection provided by the MAC.

All encrypted messages in this project are 16 bytes long; it is not a coincidence that this is
the same as the AES block size. This choice simplifies encryption slightly, as the counter
can be incremented exactly once for each message.

Securing CTR mode

A naive implementation of CTR mode might start the counter at zero whenever a connec-
tion is established. However, the same key and counter value should never be re-used to-
gether, as this results in multiple plaintext messages encrypted using the same keystream.
If two plaintexts P1 and P2 are encrypted with the same keystream to give M1 and M2,
then M1 ⊕M2 = P1 ⊕ P2. This is a significant information leak, especially if the attacker
knows the value of one of P1 and P2, in which case it is trivial to determine the other.

To prevent this occurring, either the counter must never be reset, or the key must be
changed whenever a reset occurs. In my project I took the former approach: the counter is
concatenated with a 32-bit initialisation vector, which is stored in non-volatile EEPROM3

memory. The value of the counter is sent from the device to the host in the MSG_SETUP
message when the connection is established.

If the 32-bit IV overflowed, messages could theoretically be encrypted with a counter
value that has already been used, resulting in a vulnerability. Given the extra space in
the MSG_SETUP message, the IV could indeed be larger than 32 bits. However, this is
unnecessary as the IV is incremented only when the device boots, which is unlikely to
occur anywhere close to 232 times over the lifetime of the system.

Wear levelling

A more realistic concern is that each byte in the EEPROM is only rated to handle 105

writes, so the bytes storing the IV may wear out and fail after a few thousand startups.
The solution to this would be to implement wear levelling, so successive writes are to
different areas of the EEPROM. As the counter occupies only 4 bytes of the 1024 bytes
available, there are plenty of places for it to be written, and this would prolong the life
of the device considerably. Although I did not implement it, several libraries for wear
levelling exist for the Arduino platform. [13]

3Electronically Erasable Programmable Read-Only Memory, a small amount of non-volatile memory
which, unlike the flash memory used to store the program, can be written to by a program on the
microcontroller.
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3.3.2 Message authentication

As well as encrypting sensitive messages, it is necessary to authenticate them. This
ensures that the encrypted message has not been altered in transit; messages which fail
the authentication check on receipt are discarded. Authentication is important for several
reasons:

• Block ciphers in counter mode are malleable4. This means that an attacker can
affect the plaintext in a predictable manner by modifying the ciphertext. In counter
mode, the ciphertext and plaintext are converted to one another by XOR with the
keystream, so a bit flip in the ciphertext will cause a bit flip in the corresponding
position in the plaintext. An attacker who knows the structure of the message could
exploit this to make meaningful modifications. For example, flipping the bit that
indicates whether one of the Shift keys is pressed would let an attacker alter the
capitalisation of any letters typed.

• There have been attacks on cryptosystems which require an attacker to be able
to make the system decrypt ciphertexts of their choice. While I have no reason
to believe the encryption scheme used here is vulnerable to such chosen-ciphertext
attacks, it is considered good practice to validate input before attempting to decrypt
it. [15, p.112]

The algorithm used is a simple ‘base case’ of CBC-MAC. CBC-MAC works by encrypting
the message with a block cipher in Cipher Block Chaining mode, in which the output of
encrypting block n is combined with block n+1 using XOR. The last output block is used
as the Message Authentication Code (MAC). For this application, however, the message
to be authenticated (the encrypted keystroke message) fits within a single AES block, so
calculating the MAC consists simply of encrypting it using one application of AES.

CBC-MAC is vulnerable if the messages over which the MAC is computed can vary in
length. [15, p.127] In this situation, it is possible to forge a valid MAC for a message that
was never sent, albeit subject to strict constraints. However, the messages in this protocol
are fixed-length so this is not a concern.

The keys used for encryption and MAC computation are distinct. In some scenarios,
using the same key can result in vulnerabilities. For example, if CBC mode is used for
both encryption and MAC computation, the message may be malleable. In the design I
use here, to the best of my knowledge there is no such vulnerability; separate keys are
used as a precaution.

4This is a general property of stream ciphers, which generate a pseudorandom keystream and XOR
this with the data. CTR mode can be thought of as a way of producing a stream cipher from a block
cipher.
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MAC limitations

The MAC prevents message forgery and modification; it does not prevent an attacker
replaying, reordering or dropping messages.

It is common to include a sequence number in packets to detect out-of-order or repeated
delivery. I chose not to include a sequence number explicitly, because the monotonically
increasing counter used in CTR mode encryption provides this function already: if a
message arrives out-of-order or is repeated, it will be decrypted with the wrong counter
value, resulting (with overwhelming probability) in nonsense.

3.4 Key agreement scheme

The purpose of this scheme is to establish the two shared AES keys k1 (for encryption)
and k2 (for authentication) on the device and the host.

As mentioned in subsection 2.5.1, the protocol is designed around the user transmitting
a secret from the host to the device. When the user presses a special key sequence, the
device prompts the host to generate a new secret. The host displays the secret on screen,
for the user to type in.

Pressing the special key sequence also puts the device into ‘secret entry mode’ (state REKEY
in Figure 3.6). In this mode, keystrokes are not sent to the host but are interpreted as
the new secret to be used to determine k1 and k2.

3.4.1 Secure attention sequence

The key combination that triggers the secret entry mode must be one that is not commonly
encountered in ordinary use. It should also ideally be reasonably simple and memorable.
I chose right-control+R, the R standing for ‘re-key’ or ‘regenerate keys’. Right control
specifically was chosen because it does not block other uses of the Ctrl+R key combination
(for example to refresh a page in some web browsers), as it is still possible to use the left
control key.

3.4.2 Initial implementation

In my initial implementation, the host generated the keys directly and displayed them
in hexadecimal, and the user was required to type the entirety of both keys in on the
keyboard. This was cumbersome and error-prone, as two 128-bit keys in hexadecimal is
64 keystrokes.
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3.4.3 Password-based implementation

In this improved implementation, the host generates a random password of configurable
length. This can be shorter than the two keys in the initial implementation, as it is
‘stretched’ using a password-based key derivation function (PBKDF). There are relatively
few restrictions on the nature of the password: it can be any length from 1 to 128 char-
acters (some upper limit is necessary due to the limited RAM on the microcontroller).

Password-based Key Derivation

A short password, even if randomly generated, will contain less entropy than a randomly-
generated key. For example, while a 128-bit key has 2128 equally likely possible values, an
8-character password consisting of alphanumeric characters has 628 ≈ 247 values. Using
such passwords could therefore leave the system vulnerable to a brute-force attack in
which all possible values are tried. Brute-forcing 2128 values is impossible with current
technology, but 247 is feasible for a dedicated attacker, with 64-bit keys having been
successfully brute-forced as early as 2002. [41]

To mitigate this threat, the keys are generated from the password by a password-based
key derivation function, which is designed to run slowly, by performing many iterations
of the underlying cryptographic operations5. The number of iterations is chosen so that a
single key derivation is quick enough to be usable (a few seconds at most), but brute-force
attacks are no longer feasible.

A threat that still remains is that a sufficiently well-resourced attacker could dedicate
a large amount of computation to generate all the keys from a given range of possible
passwords, meaning this effort can be re-used in multiple attacks.

To prevent this, a random and unique (but not necessarily secret) value called a salt is
incorporated into the input of the PBKDF whenever it is used. Since the salt is changed
for every use of the PBKDF, it is impossible to precompute a list of keys for a given range
of passwords.

The salt is generated alongside the password, as described in subsection 3.4.4. It is sent
to the device in a MSG_SALT message.

One disadvantage of a slow PBKDF for this project is that the difference in performance
between the microcontroller in the device and a desktop processor is several orders of
magnitude. In order for password entry to be usable, the PBKDF must run in no more
than a few seconds on the device. The number of iterations must therefore be very low
(testing indicated that around 2000 iterations can execute in 1 second). On the host,
the PBKDF is much faster: approximately 500,000 iterations per second on an ordinary

5KDFs are related to the proof-of-work schemes used in cryptocurrency mining.
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PC, using the same implementation.6 A single key derivation using 2000 iterations could
therefore be expected to take 0.0042 seconds.

Having so few iterations is suboptimal, as it makes brute-forcing easier. However, such
an attack is still difficult: computing keys for all 247 8-character passwords would take
247 × 0.0042 ≈ 5.9 × 1011s, or approximately 19000 years. Longer passwords would
exponentially increase this time.

The calculation above suggests that 8 character passwords are still difficult to brute-force.
However, since the PBKDF relies on AES, it can be sped up significantly with hardware
support. Many modern desktop processors support the AES-NI instruction set, which can
provide encryption rates on the order of 109 bytes per second. [22] The bulk of the time
involved in trying a given password is the 2000 AES iterations in the KDF, each of these
being 16 bytes, so a back-of-the-envelope calculation gives 109

2000×16
= 31, 250 passwords per

second. At this rate, enumerating all 8-character passwords would take 247

31250
≈ 4.5×109s,

around 142 years. While this is still beyond what is feasible on a single machine, an
attacker with considerable resources (such as the money to rent hundreds or thousands
of cloud server instances) could mount an attack in a more reasonable time. If this is a
concern, it would be prudent to use longer passwords.

Some KDFs are deliberately designed to be difficult to accelerate in hardware. For exam-
ple, scrypt [31] is designed to be memory-intensive, so providing special CPU support,
or even building custom hardware, would not provide much of a speedup. Unfortunately
the limited memory on the device (2KB) rules out use of algorithms like this.

Design of the password-based key derivation function

The PBKDF is a specialised form of hash function: a function which maps arbitrary-
length inputs to fixed-length outputs.

Cryptographic hash functions have several security properties, not all of which are appli-
cable for a KDF. The properties that are important for a KDF are:

• Being one-way, so compromise of one derived key does not lead to compromise of
the input (and thus any other keys generated from the input). That is, it should be
‘hard’ to compute the input of the function given the output.7

• Being entropy-preserving : technically a function which always outputs a key of all
zeroes is a valid KDF, but it is not very useful! Formally, the entropy of the output

61000000 iterations ran in a mean of 2.109s with standard deviation 0.035s, n = 10. Tests run on an
Intel Core m3-6Y30 CPU on Ubuntu 18.04, code compiled with GCC at optimisation level O2.

7Ideally one would like the function to be a one-way function, computable in polynomial time but
with an inverse provably only computable in superpolynomial time. Unfortunately the existence of these
functions is an open problem, and their existence would imply P 6= NP.
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should be approximately equal to the lesser of the entropy of the input and the
length of the output.8

For this algorithm, the underlying cryptographic primitive is the AES block cipher, as
used for message encryption and authentication. AES was chosen because it is already
present in the program, and minimising the size of the program is important if it is to fit
into the limited program memory on the microcontroller.

AES is used in a Davies-Meyer construction [19, p.110] to construct a compression func-
tion. This is a function which transforms two inputs of length n to a single output, also
of length n. Note that despite the name, such functions are not to be confused with
algorithms for data compression, as they are not designed to be easily reversible or to
preserve information about the input.

Given a block cipher encryption function E : {0, 1}l×{0, 1}n → {0, 1}n with key size l and
block size n, the Davies-Meyer construction defines the compression function C(K,M) as
EK(M) ⊕M . For AES-128 as used in this project, conveniently l = n, but this is not a
requirement for the construction to work. The operation of the Davies-Meyer construction
can be seen in lines 6 to 10 of Algorithm 1.

In order to construct the desired variable-length hash function, the compression function
is used in a modified Merkle-Damgård construction. [29, p.91] In this construction, the
input is padded to a length divisible by n and split into blocks of length n.9

The blocks are then combined one at a time, using the Davies-Meyer construction, with
the salt as the initial value.

Finally, the output of the Davies-Meyer compression is used to encrypt the constants 0x00
and 0x01, giving the keys k1 and k2.

The details of the PBKDF are shown in Algorithm 1. The cost factor I controls the
number of iterations of AES applied in the compression stage (lines 6-10), and thus the
running time of the algorithm.

8In other words, the output should not have lower entropy than the input, unless constrained by the
length of the output (an n-bit value cannot have more than n bits of entropy).

9In a standard Merkle-Damgård implementation, the length of the input is then appended as an extra
block, so that no input to the next stage is a suffix of another. This strengthens the proof of collision
resistance. [29, p.93] However, collision resistance is not a significant concern for a KDF, so this step is
skipped.
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Algorithm 1: Davies-Meyer based KDF
Input: Password P , Salt S, Cost factor I
Output: 128-bit keys k1, k2

1 n← d|P |/128e
2 P ← P padded with 128n− |P | zeroes
3 for i← 1 to n do
4 Pi ← ith 128-bit section of P

5 C0 ← S

6 for i← 1 to n do
7 T ← Ci−1

8 for j ← 1 to I do
9 T ← AESPi

(T )

10 Ci = T ⊕ Ci−1

11 k1 ← AESCn(0)

12 k2 ← AESCn(1)

3.4.4 Random password generation

The protocol described above relies on being able to generate unpredictable random values,
for keys (in the original design) or the password and salt (in the later design).

Such values are generated using a cryptographically secure pseudorandom number gen-
erator. Informally, this is an algorithm which generates a sequence of values that are
indistinguishable from a comparable truly random stream, such as that produced by toss-
ing a coin repeatedly. More formally, a CSPRNG should satisfy the next-bit test : given
the first k bits of an output sequence, there is no polynomial-time algorithm that can pre-
dict the next bit with probability greater than 0.5 + negl(l). negl is a negligible function
which, as l tends to infinity, tends to zero faster than 1/poly(l) for any polynomial poly .

The CSPRNG used is that provided by the Linux kernel and made accessible via the
getrandom system call10. In recent versions of the kernel this is based on the ChaCha20
stream cipher. The entropy used to seed the CSPRNG (i.e. the source of ‘true’ ran-
domness for what is ultimately a deterministic algorithm) is gathered from device drivers,
ultimately coming from the timing of unpredictable events such as network packet arrival.

Generating high-quality random values suitable for cryptographic use on a microcontroller
is more difficult than on a PC, because of the relative lack of entropy. Some sources
even recommend connecting an external ‘noise-generating’ circuit to provide sufficient
entropy.11 [37]. For this reason, the protocol is designed so that all random number

10The same generator is accessible via (and commonly known as) the special file /dev/random.
11Some specialised microcontrollers, such as the Atmel secureAVR series, include a built-in noise

source, or even a full hardware random number generator.
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generation takes place on the host.

From bytes to passwords

The output of getrandom is an arbitrary quantity of random bytes. To convert this to a
password, each 4-byte block is interpreted as an unsigned 32-bit integer and taken modulo
62. The result is used as an index into a 62-element array containing the ASCII characters
A-Z, a-z and 0-9.

3.5 Simulating keystrokes with uinput

Once a keystroke event has been received, authenticated and decrypted, it is time to act
on it by injecting a keystroke on the host system. For this I use the uinput Linux kernel
module [42], which provides an API for creating and controlling virtual input devices from
userspace (i.e. outside the kernel).

3.5.1 Configuring the virtual keyboard

Before uinput can be used to inject keystrokes, it is necessary to configure the virtual
input device. To the rest of the system, this appears identical to the user plugging in a
real keyboard.

Configuration is performed by a series of ioctl calls. These are system calls that allow
arbitrary communication between userland programs and kernel modules such as device
drivers. The first argument of an ioctl is the file descriptor of the device being manip-
ulated (following the UNIX philosophy of devices as files); for uinput this is the special
file /dev/uinput. Once configured, keystrokes are simulated by writing to the same file
using the write system call.

Device IDs

As part of the configuration process, it is necessary to specify the vendor and device IDs,
and the human-readable device name. Vendor IDs are allocated to hardware manfacturers
by industry bodies such as the USB Implementers’ Forum (USB-IF), to ensure all types
of device have a unique identifier. Operating Systems frequently use these IDs to choose
the correct driver for a device.

Such IDs are not cheap: USB-IF charges at least $3,500 for a Vendor ID. [12] Unsur-
prisingly, I did not apply for an official Vendor ID for this product. Instead I used one
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which is reserved for development purposes by Objective Development, a company which
produces USB libraries. [11] As this ID is shared, there is no guarantee it will not conflict
with other devices, but it will at least not conflict with devices produced by licensed
manufacturers who have their own Vendor ID.

3.5.2 Keycode conversion

One of the tasks performed by the host software is to translate keystroke information
from the format used by the USB HID specification to that used by the Linux kernel and
uinput.

The keyboard events received from the device encode the keystroke data as two 1-byte
values: the scancode, which corresponds to the key pressed or released, and the modifiers,
in which each bit indicates whether a given modifier key (shift, control, etc.) was pressed
at the time of the event. For example, pressing Ctrl-C would generate a single key-down
event, with the scancode corresponding to the key ‘C’ and the modifiers indicating that
the (left or right) control key was down. Presses of modifier keys do not generate keystroke
events by themselves.

This format does not correspond with that required by uinput. In order to convert the
keystroke to a format suitable for uinput, it is necessary to do the following:

• Convert the scancode to the corresponding Linux input event code. This is a
straightforward lookup in an array indexed by scancode.

• Compare the modifier state to that in the previous keystroke (for the first keystroke
after startup, the modifier state is assumed to be 0x00, i.e. no modifiers pressed).
If it has changed, insert key-down or key-up events for the relevant control key(s),
before emitting the event for the non-control key.

For example, if the host receives a key-down message with scancode 0x04 and modifiers
0x01, this corresponds to a press of the key ‘C’ with the left control key down. When
receiving this, the host converts the scancode to an event code, in this case 0x1E, then
compares the modifier state to that at the time of the previous keystroke. Assuming the
previous modifier state is 0x00 (i.e. no modifier keys were pressed), the host determines
that the bit corresponding to the left control key has changed from 0 to 1. It therefore
emits a key-down event for the left control key, followed immediately by a key-down event
for the key ‘C’.
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3.6 Repository Overview

The repository consists of two programs, both written in C. The device program runs
on the microcontroller and the host program runs on the host PC.

Both programs are structured for use with the CMake build system, which is integrated
into CLion (a C and C++ IDE similar to IntelliJ IDEA).

Neither program is based on an existing project; both are written from scratch. However,
several existing libraries are used.

3.6.1 Device program

The device program is implemented as a state machine, in src_device.ino.

The device program is written mainly in C, with a small amount of C++ to interact with
the USB Host Shield library, which is written in C++.12 The CMake build system is
configured to cross-compile to the AVR architecture (used by the microcontroller) using
the GCC compiler. Loading the compiled program onto the microcontroller over USB
using avrdude is also performed automatically as a step in the build process.

Developing for AVR microcontrollers is very similar to developing for an ordinary x86
Linux system. The avr-libc project [1] provides a large subset of the standard GNU
libc.

The following libraries are used:

• avr-libc [1]: provides a subset of the standard C library. Licensed under a custom
permissive license based on the Berkeley license. [40]

• USB Host Shield library [36], licensed under the GNU General Public License
(GPL).13

3.6.2 Host program

The host program, like the device program, is at its core a state machine. The state
machine, and the entry point of the program, are in host.c.

12Strictly speaking, the entire device program is compiled as C++; the C features used are a subset
of C++, although this is not a property of all C programs.

13The use of a GPL library requires the entire project to be released under the terms of the GPL.
This can be problematic in commercial applications if the manufacturer wishes to keep their source code
secret, so for a production implementation it may be worth using a different library.
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The following libraries and code fragments are used:

• arduino-serial-lib [21]: a small library which configures the serial port for com-
munication with the Arduino board. Licensed under the MIT License.

• The uinput_setup and uinput_emit_event methods in uinput.c are based on
example code [42] from the Linux kernel documentation. Licensed under the GPL
v2, as part of the Linux kernel source.

Some code is common to both the host and device programs, such as the AES imple-
mentation in aes.c/aes.ino. Originally I hoped to keep a single copy of this code and
include it in both projects; this did not work well with the CMake build system, so it was
necessary to duplicate it. The duplicated code was excluded when calculating the line
count in the Proforma.
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3.7 Protocol diagram

Start (device) Start (host)

Read IV from EEPROM

Initialise counter
Change to state OPERATING

Change to state OPERATING
Wait for input

Receive keystroke from keyboard
Encrypt keystroke
Increment counter
Compute and attach MAC

Await message

Validate MAC
Decrypt keystroke
Convert to kernel format
Inject keystroke

Change to state REKEY
Switch on LED

Change to state REKEY
Generate salt

Generate password
Compute keys
Display password
Change to state OPERATING

Password entry
Compute keys
Switch off LED

MSG_SETUP

MSG_SETUP_ACK

MSG_ENCRYPTED

MSG_REKEY

MSG_SALT

Keystroke
C
trl-R

Figure 3.10: Overview of the programs on the device and host, and the messages exchanged
between them.
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Evaluation

4.1 Timing

4.1.1 Motivation

One of the requirements for the system is that it can be used like an ordinary keyboard.
For this to be true, the latency of the system (the time from a key being pressed to the
PC responding to the keypress) must be comparable to that of an ordinary keyboard.
A timing analysis was carried out to determine the additional latency of the system
compared to a keyboard directly attached to a PC.

4.1.2 Methodology

To measure the latency, I used a high-framerate camera, specifically the camera on an
iPhone X, which can capture video at 240 frames per second.

In order to indicate when the keystroke is registered (and timing should be stopped), I
added another LED to the device, and another message (MSG_KEYSTROKE_ACK), from the
host to the device, to instruct the device to blink this LED. The camera is used to measure
the time between the key being pressed and the LED illuminating.

After filming a number of keystrokes, I stepped through the videos frame-by-frame to
determine the number of frames between the key press (measured at the point where the
key reaches the bottom of travel) and the LED illuminating. An example frame can be
seen in Figure 4.1. As the frame rate is known and constant, the number of frames is
easily converted to a latency value.

Part of the aim of this analysis was to compare the system against a keyboard connected
directly to a PC. For this, a subset of the normal host program was run, which simply

36
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Figure 4.1: An example frame from the timing analysis showing the indicator LED (yellow)
illuminated. The number at the bottom is the frame number.

listens for a keystroke (using the getchar function from the C standard library) and
sends a MSG_KEYSTROKE_ACK to the Arduino. The Arduino was programmed with a simple
program to listen for this message and blink the LED (bare-keyboard-timing.ino).

An alternative to blinking the LED would be to simply wait for the character to appear
on the PC display. However, the refresh rate of my display is only 60Hz, and it is very
rare to see displays with refresh rates above 120Hz. The LED is therefore necessary so as
not to lose precision.

4.1.3 Measuring jitter

The tests were run on an ordinary Ubuntu Linux installation with no other applications
open. However, as this is not a real-time OS, process scheduling is unpredictable and
some jitter (variance in latency) is to be expected.

Another source of jitter comes from the fact that USB is host-driven, and the host polls
the device at a regular interval for new events (8ms is common). For this device, there
are in fact two stages of polling: the Host Shield polls the keyboard, then the host polls
the microcontroller.

Jitter does not represent a flaw in the testing methodology: the aim of the experiment is
to measure performance in a realistic situation, and this jitter is representative of normal
use of the system.
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4.1.4 Limitations

This experiment was designed to compare the latency of the system with that of an ordi-
nary keyboard, not to determine the latency in absolute terms. The values measured are
likely to all be overestimates of the true latency by a constant factor, due to the time taken
for the MSG_KEYSTROKE_ACK to be transmitted to, and processed by, the microcontroller.

Measuring the time of the keystroke is a potential source of inaccuracy. At 240fps, a
keystroke takes many frames, so I chose to start counting from the point where the key
reaches its lowest position. The keystroke is actually registered by the keyboard when the
key is approximately 1mm above the lowest position, so the timing starts a frame or two
late. Measuring the exact position of the true starting point, and determining when the
key has passed it in each video, would be extremely difficult.

If the key press speed is the same in every trial, then this will only result in a constant
offset from the true latency, which is acceptable as the aim is comparison. I made every
effort to keep the key press speed the same, but this cannot be guaranteed.

4.1.5 Results

When the keyboard was attached via the trusted-path system, the mean latency was
90.2ms, with a standard deviation of 8.7ms. (n = 20).

When the keyboard was plugged into the PC directly, the mean latency was 48.5ms, with
a standard deviation of 8.6ms (n = 20).

These results suggest that the system does add a small amount of latency (approximately
40ms).

Whether 40ms of additional latency is theoretically perceptible is the subject of contro-
versy, with figures from 13ms to 100ms being quoted as the minimum latency that is
noticeable in a user interface. [10] Anecdotally, however, I could not perceive the extra
latency.

The standard deviation for both sets of measurements is very similar. This suggests that
the trusted-path system does not introduce additional jitter.

Raw data can be found in Appendix B.
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4.2 Security analysis

In this section I present a qualitative security analysis of the system.

The aim of this section is to systematically consider possible attack vectors which, given
the threat model in section 2.4, could be used to ‘break’ the system. Although this effort
aims to be as systematic as possible, it is impossible to guarantee that nothing has been
overlooked: quantitatively ‘measuring’ security is not a solved problem.

What constitutes a ‘break’ is based on the requirements in section 2.3. The definition
used for the analysis is that an attacker is able to ‘break’ the security of the system by
doing any of the following:

• Determine which keys are pressed on the keyboard with a success rate beyond that
of guessing. This does not have to take place in real time as the keys are pressed.

• Cause a false keystroke to be registered on the host system, either altering a legiti-
mate keystroke or injecting a new keystroke entirely.

• Replay the entry of any sequence of one or more keystrokes previously entered on
the keyboard.

In order to enumerate possible threats in a reasonably systematic fashion, I use the concept
of Attack Trees [32], devised by cryptographer Bruce Schneier. In an Attack Tree, the
overarching goal of the attacker (e.g. ‘steal money from the bank’) is represented by the
root node. Ways of achieving this goal (e.g. ‘take money from the safe’) are represented
by its child nodes, and leaves represent individually actionable tasks (e.g ‘bribe bank
manager for safe combination’).

The directly actionable tasks (leaf nodes) on the tree are detailed and evaluated after the
tree (Figure 4.2).
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1. Attack AES implementation

As mentioned in subsection 3.3.1, I implemented AES myself as a learning experi-
ence. Whilst my implementation is functionally correct, it may contain side-channel
vulnerabilities which could leak information about the plaintext and/or the key.

The most common such attack is known as a timing attack, and exploits variation
in the execution time of the algorithm with different inputs.

Timing attacks against even well-established AES implementations have been de-
veloped; a 2005 attack by cryptographer Daniel Bernstein exploits timing variations
caused by CPU caching to determine a key by timing the encryption of chosen
plaintexts, using the AES implementation in the popular OpenSSL library. [7]

Since the aforementioned attack, considerable effort has however gone into devel-
oping constant-time cryptography. The AES implementation in the NaCl cryp-
tography library, for example, operates without data-dependent branching or data-
dependent array lookups [26], and as such is resistant to attacks of the form described
above. A production implementation of this product would probably use a library
like this.

A related family of side-channel attacks is based on power analysis. This involves
measuring the power consumed by a piece of hardware as it performs cryptographic
operations.

Power-based attacks are compatible with the threat model in section 2.4. The device
is powered over the USB connection, so an eavesdropper could measure the current
draw with an inline ammeter.

Power analysis is possible, but requires a large amount of operations. For exam-
ple, [23] describes the recovery of a 128-bit AES key from an implementation of a
very limited part of an AES encryption (a single AddRoundKey followed by a single
SubBytes), taking 25 minutes and using known, but not arbitrarily chosen, plain-
texts. Ultimately this relies on the same vulnerabilities exploited in timing attacks;
that control flow (and thus power consumption) can, in naive implementations,
depend on secret values.

An alternative, physical, mitigation would be to power the device from a separate
power supply, assuming this could not also be compromised.

2. Attack AES cipher itself

This attack would exploit vulnerabilities in the AES algorithm. At the time of
writing, there are no known vulnerabilities of practical interest, so this attack is not
considered feasible.

While there are no known practical vulnerabilities, cryptographers have discovered
weaknesses which are of academic interest, i.e. potential attacks requiring less effort
than brute-force. For example, Bogdanov et. al. [8] discovered a theoretical key-
recovery attack that requires only 2126.1 operations, instead of the 2128 to brute-force
an AES-128 key.
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It is plausible that weaknesses like these may one day be developed into practical
attacks. Given how widely AES is used, if such a practical attack were developed,
there would most likely be more lucrative targets than this system.

3. ‘Shoulder-surf’ password

‘Shoulder-surfing’ attacks involve observing data on the target’s screen, or the tar-
get’s keystrokes. These are commonly used to obtain bank PINs from ATM users.
The attacker may be literally looking over the victim’s shoulder, or a concealed
camera may be used.

This attack is difficult to mitigate in the current design of the system. However,
an alternative design could be used, in which the user transfers data that does not
need to be secret. This is discussed further in subsection 2.5.1.

4. Brute-force AES key(s)

A brute-force attack, as mentioned in section 3.3, involves trying all possible values
for a key until the correct one is found. This is feasible for short keys: the CO-
PACOBANA hardware, for instance, can successfully brute-force a 56-bit key (used
by the DES cipher) in under 9 days for a cost of less than e10000, [20] and given
sufficient computing power, 64-bit keys are vulnerable. [41].

A brute-force attack on 128-bit keys is theoretically possible, but considerably be-
yond anything that has been accomplished today. Increasing the key length to 256
bits would make a brute-force attack thermodynamically impossible until computers
are ‘built from something other than matter’. [33]

5. Brute-force password

As described in subsection 3.4.4, the password is randomly generated with a con-
figurable length, and an 8-character alphanumeric password has 628 ≈ 247 possible
values, which it is feasible for a well-resourced attacker to try.

To mitigate this threat the PBKDF is designed to run slowly. A single key derivation
operation, as needed for legitimate use of the system, does not take an unduly long
time (at most a few seconds), but brute-forcing keys for a large set of possible
passwords is no longer feasible.

As described in subsection 3.4.3, deriving keys from all possible 8-character pass-
words would take many years on an ordinary PC, but is within the realm of possibil-
ity for a well-funded attacker. Longer passwords would render this attack impossible
for even these attackers.

6. Exploit random number generation weaknesses.

The claims regarding the difficulty of brute-forcing the password rely on the as-
sumption that it is randomly generated in a way that cannot feasibly be predicted.

The password is generated using the CSPRNG built into the Linux kernel, accessed
via the getrandom system call. This is considered adequate for the generation of
cryptographic secrets, provided sufficient entropy is available to initialise (seed) it.
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The security of the random password generation is discussed in detail in subsec-
tion 3.4.4.

Given how widely the Linux kernel CSPRNG is used for key generation, a major
vulnerability would result in a similar situation to what would result from a break
in AES: it may compromise this system, but there would be plenty of higher-value
targets.

7. Reprogram device to leak data

The ATMega328P microcontroller used on the Arduino platform is shippped pre-
programmed with a bootloader program which, in combination with the on-board
USB hardware, allows the microcontroller to be reprogrammed over the same USB
connection with which it connects to the host. [5]

An attacker with the ability to transmit on the USB connection could use this facility
to replace the program running on the microcontroller. An obvious replacement
program would be one that appears to operate identically to the standard program
but can also communicate with the attacker to leak data.

This is a major vulnerability, but fortunately it is easily fixed by using a microcon-
troller without the bootloader program. Once this is done, changes to the code are
only possible with programming hardware. Such an attack would involve physically
tampering with the device, and thus falls outside the threat model.

It is possible to remove the bootloader on an Arduino, using the aforementioned
programming hardware, to give a ‘bare’ microcontroller. I elected not to do this
because the ability to reprogram over USB is very useful for development.

8. Exploit vulnerabilities in host program

The host program necessarily accepts and processes input from the device, so an
attacker could send inputs that are crafted to cause the host program to malfunction
in some way.

Common vulnerabilities include buffer overflow attacks, in which the receiving pro-
gram is tricked into writing data beyond the end of a fixed-size input buffer. The
oversized input may overwrite other data on the stack (attacks on heap-allocated
buffers are also possible but somewhat more complex), including most importantly
the return address, causing execution to jump to an attacker-chosen address. This
can lead to near-arbitrary code execution. Buffer overflows can be avoided if all
reads of untrusted data are of fixed length, which is the case in this program.

In order to minimise the damage caused if the program is compromised, it is good
practice to run it with the minimum possible privileges. Doing so ensures that even
if an attacker is able to execute arbitrary code via the exploited program, their
access to the rest of the system is limited.

9. Spoof a directly-attached keyboard

An attack vector that allows arbitrary keystroke injection is for the attacker to
present itself to the host PC as a USB keyboard, instead of the USB serial device that
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the system normally uses. A variation on this would be to pretend to be a USB hub,
with the trusted path keyboard as one connected device, and an ordinary keyboard
as another. Once connected as a keyboard, the attacker can inject keystrokes by
sending USB Human Interface Device (HID) messages, bypassing the host software
entirely.

As well as entering attacker-chosen data, malicious keystroke injection can lead to
arbitrary code execution, as the malicious device can enter keystrokes that cause
the system to, for example, open a terminal and download and run an arbitrary
program from the Internet. This attack vector is widely known; programmable
keystroke-injection devices disguised as USB flash drives are available for under
$50. [14]

A straightforward mitigation is to disallow USB HID devices such as keyboards from
connecting to the host PC. On most Linux systems this can be achieved by config-
uring the udev device manager. Doing so might be inconvenient, but restrictions on
USB devices are already common in high-security corporate environments. [39]

A handful of other nodes represent attacks that are not directly actionable but also bear
considering.

10. Attack encryption / authentication protocol, or mode of operation

The counter (CTR) mode of AES operation as described in subsection 3.3.1 is
vulnerable if used incorrectly. Specifically, if two or more streams of plaintext are
encrypted with the same key and initialisation vector (IV), then the XOR of the
ciphertexts will be identical to the XOR of the plaintexts. If one of the plaintext
messages is known, the other can then be recovered.

To exploit this attack, the attacker would need to force an IV or counter reset. This
is investigated under the entry for ‘Force an IV counter reset’ (item 11).

There may be other vulnerabilities in the protocol. Given the protocol’s simplicity
it is unlikely that there are any major issues, but with a qualitative analysis this
cannot be guaranteed. To some extent, it would be possible to use formal methods
to prove the absence of vulnerabilities; this is discussed further in subsection 4.2.1

11. Force an IV or counter reset

In order to perform some attacks, the attacker must be able to alter the value of
the counter used to encrypt. This could involve altering the initialisation vector,
which under normal operation is monotonically increasing and stored in non-volatile
EEPROM memory, or the counter, which is stored in RAM and reset to zero every
time the device starts up. By design, the protocol does not include any way to
reset these counters, but it would be possible to use the same technique described
in ‘Reprogram device to leak data’ to write a new value to the EEPROM, or indeed
to reprogram the device with a new program that resets the counter under certain
conditions.
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The attacker can tamper with the IV value when it is sent from the device to the
host in the MSG_SETUP. However, the host only uses the counter for decryption,
so tampering with it would simply cause any messages received to be incorrectly
decrypted.

If encrypted messages were to be sent in both directions, as might be the case
in a more complex protocol, this single counter would be vulnerable, as the host
would encrypt using a counter value that may have been tampered with by an
attacker. It would be necessary to maintain two counters, one for each direction of
communication.

12. Trick user into entering password outside designated password-entry
mode

In password-entry mode, any keystrokes entered on the keyboard are interpreted as
a password for generating a new set of keys, and accordingly are not sent to the host
in keystroke messages. If an attacker could trick the user into entering a password
when the device is not in password-entry mode, it would be sent, encrypted, to the
host.

In normal operation the password should never be sent to the host, but doing so
(over the encrypted link) is only dangerous in two scenarios:

• If the existing encryption key is known, the attacker can determine the pass-
word. If the user subsequently enters the same password in password-entry
mode and it is used to derive new keys, the attacker will also be able to derive
the same new keys and the system will remain compromised.
This scenario requires the encryption key k1 (although not necessarily the au-
thentication key k2) to be compromised already, as well as a means of tricking
the user into entering the password at the wrong time. Thus it is difficult to
exploit for relatively little gain.

• If the host is running a malicious program which logs keystrokes entered, then
this will log the password, from which the key can be derived.
This scenario requires the host to be compromised already, and does not pro-
vide a significant advantage to the attacker beyond what would already be
available from a compromised host, although it may allow the decryption of
past keystrokes.

To reduce the likelihood of either of these scenarios occurring, the device is fitted
with a green LED which illuminates only when in password-entry mode. Ensuring
that the password is only entered when this LED is illuminated is, however, an issue
of user compliance, which is difficult to guarantee.
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4.2.1 Summary

The security analysis identified some issues with the implementation of the device as-is.
In particular, the ability to either reprogram the microcontroller or spoof an ‘ordinary’
keyboard are very concerning. Fortunately, both these issues are easy to mitigate. The
analysis did not identify any attacks which are both feasible to execute and difficult or
impossible to mitigate.

Assuming the fixes described are applied, the system appears to meet the security re-
quirements in section 2.3.

While the Threat Tree methodology aims to be as exhaustive as possible, it is ultimately a
qualitative method which is not guaranteed to find every possible vulnerability. It remains
possible that there are feasible attacks not enumerated above.

An interesting extension to this project would be to evaluate parts of the system using
formal methods. Techniques such as BAN logic express protocols in a form which can
be reasoned about mathematically, the aim being to prove security properties and expose
weaknesses. [9] This is the closest thing to an exhaustive security analysis technique.

While these formal methods are useful, they are not a panacea. [2, p.90] Their scope is
usually limited to the communications protocol and potentially the underlying cryptogra-
phy; as such they would not expose threats related to the implementation. Furthermore,
even formal proofs of security can contain errors, or rely on assumptions which later turn
out to be false: ‘if it’s provably secure, it probably isn’t’. [2, p.857]

4.3 Usability analysis

This section aims to briefly compare the system against the usability requirements in
section 2.3.

U1 The system must provide a keyboard-based input channel which is usable as an ordi-
nary keyboard. After a setup phase, the user should be able to forget they are using
a specialised input device, i.e. the device should be transparent.

This requirement is mostly met; it is perfectly possible to use the system like a
normal keyboard. There are a few minor issues:

• The secure attention sequence (right-Ctrl+R) used to start the key agreement
means that it is not possible to use the system to type this exact key sequence.
It is, however, possible to use the left Ctrl key instead for almost all uses.

• The status LEDs on the keyboard (Caps Lock, Num Lock etc.) do not currently
work. I spent several days on this issue, but the USB Host Shield library is
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very poorly documented and I decided continuing was not an effective use of
my time.

U2 The setup procedure, if it requires user input, should consist of simple and easy-to-
follow instructions.

This requirement is met. The user is only required to type in a short password and
press Enter. Instructions for doing so are printed to the console.

Some users might find a graphical user interface less intimidating than the command
line, so it would make sense to add one in a production implementation. However,
this project was intended as a proof of concept, and a polished UI was not an aim.
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Conclusion

Overall, this project has met its success criteria, as described in the project proposal (Ap-
pendix C). I have constructed a system which provides a keyboard-based input channel
to a Linux PC and is secure against keyloggers. I have also measured the timing charac-
teristics of the system compared to an ordinary keyboard, and determined that system
adds a small but acceptable amount of latency and does not significantly increase jitter.

The system is secure against most of the issues raised in the analysis. Some vulnerabil-
ities are present due to the nature of the prototype, but would be easy to remedy in a
commercial product.

It would be too bold to claim that the system is ‘secure’ in an absolute sense. While some
aspects could be formally verified (as discussed in subsection 4.2.1), there is no way to
guarantee the security of a system this complex.

It also bears remembering that the threat model against which the system was evaluated
was quite narrow, and a realistic attacker may not be limited to planting keyloggers.
Nonetheless, the system provides a valuable security benefit, at low cost.

5.1 Potential improvements

Implementing the host program as an ordinary userspace application made for relatively
simple development, but meant that the system cannot protect login passwords. An
improvement here would be to implement the host program in a way that meant it could
run earlier in the boot process, for example as a driver in the Linux kernel.

The use of a password-based key derivation algorithm is not ideal, as the password has to
be kept secret. Alternatives such as Password Authenticated Key Exchange (discussed in
subsection 2.5.1) use the password for verification, and it does not have to be kept secret.
This would make the system more resistant to ‘shoulder-surfing’ attacks.
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Protocol test vectors

This appendix contains an annotated dump of the messages that might be exchanged
during setup and use of the system. These can be used as test vectors to implement a
compatible product. All messages are shown in hexadecimal.

This section should be read in conjunction with the table of messages in subsection 3.2.1.

Multi-byte values are packed into messages in little-endian form. Each message begins
with a single-byte magic number indicating what kind of message it is.

Setup

For the run detailed here, the IV value at boot is 0x0205.

After booting, the device sends out MSG_SETUP over the serial line at regular (100ms)
intervals:

aa 05 02 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The host responds with MSG_SETUP_ACK, which, aside from the magic number, must be
all zero:

bb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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Operation

For this section, the shared keys are as follows:

k1 (for encryption):

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

k2 (for authentication):

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Assume the user now presses the key ‘A’, with the left Control key also held down. Assume
also that this is the seventh keystroke pressed since the device started up, so the counter
has the value 0x06.

The device packs the modifier key state and USB keycode into an EVENT_KEYDOWNmessage:

11 01 04 00 00 00 00 00 00 00 00 00 00 00 00 00

0x01 is the value of the modifier field indicating that the left Control key is pressed. 0x04
is the USB HID key code for the key ‘A’.

Encryption

To generate the keystream, the IV and counter are encrypted under k1 with AES.

With IV 0x0205 and counter 0x06 (both 4 bytes), the keystream material is generated
by encrypting the following input under k1:

05 02 00 00 06 00 00 00 00 00 00 00 00 00 00 00

The resulting keystream material:

7f f8 e2 50 a7 14 d7 95 d6 ef 8e 1f 19 20 86 fe

The EVENT_KEYDOWN message is combined with the keystream material using XOR to give
an encrypted message:

a1 a3 f7 ab b8 fc f6 23 66 60 f1 90 5f 7e f3 37
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Authentication

The MAC is computed by encrypting the (encrypted) message under k2) and discarding
the last byte, to give a 15-byte value:

58 6f 5b 81 85 c8 bf 91 ad d9 2a 4d 6a d3 38

The message and MAC are combined into a MSG_ENCRYPTED:

dd a1 a3 f7 ab b8 fc f6 23 66 60 f1 90 5f 7e f3
37 58 6f 5b 81 85 c8 bf 91 ad d9 2a 4d 6a d3 38

This is sent to the host. Validation, decryption and unpacking of the message is a reversal
of the steps detailed above

Rekeying

When the user presses the secure attention sequence (right-Ctrl+R), the device sends a
MSG_REKEY, which, aside from the magic number, must be all zero:

cc 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The host generates a random salt and password. For this run, let the password be:

ttx5ejj5im

and the salt:

e9 b9 34 c7 97 d7 0d dc e7 b1 52 e4 47 17 a9 13

The host sends the salt to the device in a MSG_SALT:

ee e9 b9 34 c7 97 d7 0d dc e7 b1 52 e4 47 17 a9
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Both host and device compute new keys k1 and k2 from the password and salt, according
to the PBKDF (Algorithm 1).

The resulting keys are:
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k1:
18 ed c0 98 2c 81 69 49 ec a1 42 a1 87 4b 9d a8
fd ca d5 69 13 c9 89 63 a0 6c 88 86 70 3b 8b da

k2:
fd ca d5 69 13 c9 89 63 a0 6c 88 86 70 3b 8b da
e9 b9 34 c7 97 d7 0d dc e7 b1 52 e4 47 17 a9 13
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Timing data
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Run Frames Time (ms)
1 18 75
2 22 91.7
3 25 104.2
4 24 100
5 22 91.7
6 24 100
7 25 104.2
8 23 95.8
9 23 95.8
10 20 83.3
11 21 87.5
12 20 83.3
13 22 91.7
14 21 87.5
15 19 79.2
16 24 100
17 21 87.5
18 20 83.3
19 19 79.2
20 20 83.3

(a) Keyboard connected to PC via
trusted-path system

Run Frames Time (ms)
1 17 70.8
2 12 50
3 14 58.3
4 13 54.2
5 11 45.8
6 10 41.7
7 12 50
8 12 50
9 14 58.3
10 11 45.8
11 11 45.8
12 12 50
13 12 50
14 10 41.7
15 9 37.5
16 14 58.3
17 10 41.7
18 10 41.7
19 8 33.3
20 11 45.8

(b) Keyboard connected directly to
PC

Figure B.1: Raw timing data



Appendix C

Project proposal

Computer Science Tripos – Part II – Project Proposal

Trusted-Path Keyboard
Candidate 2346B, Churchill College

Originator: Dr M. G. Kuhn

10 October 2018

Project Supervisor: Dr M. G. Kuhn

Director of Studies: Dr J. K. Fawcett

Project Overseers: Dr A. Madhavapeddy & Prof. J. Daugman

Introduction

Input devices such as keyboards are a potential weakness in the trusted computing base
of a modern PC. Hardware keyloggers allow an attacker to gain access to all information
entered, while remaining essentially undetectable in software.

I will build a prototype device to provide an encrypted channel from a keyboard to a Linux
PC, protecting against hardware keyloggers. I will also undertake a security analysis of
the system and measure its performance.
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Work to be done

The project consists of the following components:

1. Construction of a device which will receive plaintext input from an ordinary USB
keyboard. It will transfer this input in encrypted form to a PC, where the input will
be decrypted in software (detailed below). The Arduino platform (a development
board for the ATmega series of microcontrollers) will be used as a base for this
device.

The device will be programmed in C, as is standard for the Arduino platform.

2. Development of software (the ‘host software’) to receive the encrypted input from
the device in (1). On receiving and decrypting an input, the software will simulate
an appropriate keystroke event using the uinput kernel module.

The host software will also be written in C unless there proves to be a compelling
reason to use another language. Reasons for this include ease of interfacing with the
operating system (such as with uinput) and consistency with the embedded code.

3. Development of a protocol for the device and host software to communicate, This
will involve researching and implementing a suitable symmetric-key cryptosystem,
and later on implementing password-authenticated key exchange (PAKE) to establish
a shared key.

The side of of this protocol that runs on the device will need to work in an embedded
environment with very limited memory.

The PAKE implementation will involve the host software generating and displaying
a password. The user enters this password into the device using the keyboard - these
keystrokes are not sent to the host. Both sides will use this password to generate a
shared key, which will be used for symmetric encryption. The device will need to
indicate when it is in password-entry mode, for example by lighting an LED.

4. A qualitative security analysis of the device, host software and communications
protocol. This will involve enumerating possible attacks and systematically assessing
to what extent this system is vulnerable to them. This will entail detailed analysis
of the protocol developed in (3).

5. Measurement of the time taken for a keystroke to pass through the system, looking
specifically at the extent to which the cryptography increases latency.

In order to measure the latency of the system as a whole, these measurements will
be made in hardware, using a digital oscilloscope. This will involve running the host
software on a Raspberry Pi single-board computer, which has GPIO pins that can
be connected to the oscilloscope.
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Keyboard (unmodified) Arduino

Host system (Linux)

Host application

USB Human Interface Device (unencrypted)

Custom protocol 
over USB Serial
(encrypted)

Simulated keystroke

Figure 1: a diagram of the system. Parts in green are those I will develop (not including
any extensions).

Starting point

• I have developed simple programs for the Arduino before, but I have never imple-
mented cryptography or a non-trivial serial protocol.

• I have basic knowledge of C from Part IB and from a small amount of hobby
programming.

• I intend to use the USB Communications Device Class protocol in Abstract Control
Model mode for communication between the device and the host. This provides a
virtual serial channel over which binary data can be sent, which avoids having to
make any modifications to the USB stack on the host.

Resources required

• I will be using my own personal computer for development. My backup strategy
is detailed below.

• An Arduino Uno development board and corresponding USB host shield.
These are widely available and inexpensive. Alternatively, I may use an Arduino
Due board, which has a more powerful microcontroller and can act as a USB host
(to support a keyboard) natively.

• A generic USB keyboard. I have one of these already, and can purchase spares
cheaply if necessary.
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• Potentially some basic electronic components such as resistors, LEDs and bread-
boards (especially for some of the extensions). These are cheap and widely available.

• A digital oscilloscope to take timing measurements. Dr Kuhn is able to supply
one of these.

• A Raspberry Pi single-board computer to act as the host in order to take timing
measurements. I have several of these.

Success criteria

1. The system can be used to enter data into a PC using the keyboard.

2. The device and host software can establish a secure channel in the presence of an
eavesdropper, for example by using password-authenticated key exchange.

3. A security analysis of the protocol is complete, discussing at least 3 potential vul-
nerabilities.

4. Basic timing data is collected, and this data is used to determine the effect (if any)
of the cryptography on latency.

Possible extensions

• I may implement alternative encryption algorithms and/or key exchange protocols.
In this case, I would extend the qualitative analysis and/or the timing measurements
to cover these.

For example, this might entail using a different symmetric cipher, or a key agreement
protocol other than PAKE.

• As well as intercepting keystrokes, malicious hardware could inject its own, for exam-
ple to execute commands to download malware. I may investigate this threat model
and possibilities for mitigating it, such as authenticated encryption. Alongside this,
I may investigate the feasibility of disabling other (presumably unauthenticated)
connected input devices when my device is in use.

• Rather than acting as a USB host for an existing USB keyboard, I may modify
the device to directly scan the switch matrix in the keyboard. This would bypass
the onboard controller in the keyboard. Further timing analysis would then be per-
formed to determine whether this significantly affects latency and/or jitter (variance
in latency).

• I may extend the system to support the use of a mouse alongside or instead of a
keyboard, providing the same security features.
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Timetable

Planned start date is 19 October 2018.

1. Package 1 (19 October - 1 November 2018)

Order hardware (Arduino and USB shield) - these are available for delivery within
1 week.

Begin to develop host software and investigate the use of uinput.

Configure Arduino to receive keystrokes from keyboard and send (unencrypted)
bytes to host software.

Milestone: pressing a key on the keyboard triggers a simulated keypress on the host.

2. Package 2 (2 - 15 November 2018)

Begin to implement symmetric cryptography (with a fixed key) on device and host.

Meet with supervisor to discuss suitable algorithms and operating modes.

Milestone: device can send data to host software, symmetrically encrypted with a
fixed key.

3. Package 3 (16 - 29 November 2018)

Research password-authenticated key exchange algorithms. Choose one and imple-
ment it. Add indicator for when device is in password-entry mode.

Milestone: system behaves as in Milestone 2, but using a key agreed via a PAKE
protocol.

4. Package 4 (30 November - 13 December 2018)

Slack time to recover in case previous packages are delayed.

Write up details of implementation so far, for inclusion in dissertation.

Milestone: implementation written up, possibly in bullet point form.

5. Package 5 (14 - 27 December 2018)

No work scheduled for this package - I intend to take a week off for Christmas and
spend a week revising Paper 8/9 courses.

6. Package 6 (28 December 2018 - 10 January 2019)

Develop system to emit electrical signals for timing purposes. This includes re-
compiling the host software to run on a Raspberry Pi (a non-x86 architecture) and
adding code to interface with the GPIO pins.

Begin writing Introduction and Preparation sections of dissertation.

Milestones: The device emits a signal immediately after receiving a keystroke from
the keyboard; the host software runs on a Raspberry Pi and emits a signal on a
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GPIO pin immediately after simulating a keystroke; a draft of the Introduction /
Preparation chapters is complete as far as possible; these are sent to my supervisor
for feedback.

7. Package 7 (11 - 24 January 2019)

Add functionality to device and host software to toggle whether encryption is used.

Prepare progress report and presentation.

Milestones: The cryptography can be toggled on and off with minimal effort on the
device and host application. The progress report and presentation are complete or
very nearly complete.

8. Package 8 (25 January - 7 February 2019)

Finish progress report (due 1 February) and presentation (date TBC).

Learn how to use digital oscilloscope. Develop plan for how to use it to gather
necessary timing data. Investigate suitable statistical tests for the data.

Milestones: progress report submitted; presentation delivered or ready for delivery;
plan developed for using oscilloscope to gather data.

9. Package 9 (8 - 21 February 2019)

Use oscilloscope to gather data. Perform statistical tests on data. Plot data graph-
ically.

Continue writing up: begin work on Evaluation section.

Milestones: high-quality graphs of the timing data are produced suitable for inclu-
sion in the project; a conclusion is reached as to whether the timing impact of the
cryptography is statistically significant; draft of Evaluation section (reflecting work
done so far) is complete.

10. Package 10 (22 February - 7 March 2019)

Begin security analysis of the system. Compile a list of possible attack vectors and
investigate to what extent the system is vulnerable to them.

Milestone: detailed analysis of at least 3 possible attack vectors added to Evaluation
section.

11. Package 11 (8 - 21 March 2019)

Conclude security analysis.

Continue writing up dissertation.

Milestone: draft of the dissertation content is complete (some parts may be in bullet
point form).

12. Package 12 (22 March - 4 April 2019)

Slack time.

If slack time is not needed, work on extension(s) and/or continue writing up.
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13. Package 13 (5 - 18 April 2019)

Continue writing up dissertation.

Milestones: draft of dissertation in prose form is complete; graphs and diagrams are
present in suitable quality for submission.

14. Package 14 (19 April - 2 May 2019)

Submit dissertation for feedback from supervisor and Director of Studies. Address
any issues raised.

Milestone: feedback addressed.

15. Package 15 (3 - 17 May 2019)

Finish writing up dissertation. Package source code into a ZIP archive for submis-
sion. Proofread and submit dissertation.

Aim to submit by 10 May (1 week before deadline), as advised in the Pink Book.

Milestone: dissertation and source code submitted.

Backup strategy

• Code (both for the microcontroller and the host application) will be stored under
the Git version control system and synchronised daily with a private repository on
GitHub.

• For the dissertation I will use the Overleaf online LaTeX environment. This com-
bines a traditional TeX environment with Google Docs-style automatic versioning.
To guard against the failure of this service, I will save a copy of the source to my
filesystem, backed up by Dropbox, at least once every two days.

• In the event of a laptop failure, I will use my old laptop, which has the same version
of Ubuntu Linux installed.
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